

MIGA documentation

Introduction

MIGA is a Python package that provides a MSA (Multiple Sequence Alignment) mutual information genetic algorithm optimizer. It sorts two MSAs in a way that maximize or minimize their mutual information. The genetic algorithm solvers may run on both CPU and Nvidia GPUs.

This code is available under the GNU Lesser General Public License, version 3 (see LICENSE [https://github.com/caioss/miga/blob/master/LICENSE] file).

Requirements

	Python version 3+

	GCC and G++

	Numpy

Optional requirements

	CUDA capable GPU with compute capability >= 3.0

	CUDA Toolkit version 9+

	Cython 0.22+

Instalation

CUDA builds

For CUDA enabled installation, make sure the CUDA_HOME is set and pointing to a valid CUDA 9+ installation root.

Pip

Run pip install miga

Distributed packages

	Download the latest release [https://github.com/caioss/miga/releases].

	Run pip install miga.version.tar.gz

From source

	Make sure Cython version 0.22+ is installed

	Clone this repository

	Run git submodule update --init --recursive to update submodules

	Optionally set the environment variable CUDA_HOME to point to your CUDA Toolkit installation

	Run pip install miga/package

Usage

Plese refer to the examples [https://github.com/caioss/miga/tree/master/examples] folder and to online documentation [https://miga.readthedocs.io] to learn how to use this package.

Bugs and feature requests

Please report bugs and feature requests through the Issues page [https://github.com/caioss/miga/issues].

Benchmark

Contents:

	MIGA user reference

Indices and tables

	Index

	Module Index

	Search Page

MIGA user reference

	MIGA

	Mutual Information Genetic Algorithm main class.

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 miga	

Index

 D
 | E
 | F
 | G
 | L
 | M
 | P
 | Q
 | R
 | S
 | T

D

 	
 	death (miga.MIGA attribute)

E

 	
 	elite (miga.MIGA attribute)

F

 	
 	fitness (miga.MIGA attribute)

G

 	
 	genome (miga.MIGA attribute)

L

 	
 	lambda_ (miga.MIGA attribute)

M

 	
 	MIGA (class in miga)

 	miga (module)

 	
 	minimize (miga.MIGA attribute)

 	mutation (miga.MIGA attribute)

P

 	
 	platform (miga.MIGA attribute)

 	
 	pop_size (miga.MIGA attribute)

Q

 	
 	q (miga.MIGA attribute)

R

 	
 	run() (miga.MIGA method)

S

 	
 	seq_a (miga.MIGA attribute)

 	
 	seq_b (miga.MIGA attribute)

 	set_msa() (miga.MIGA method)

T

 	
 	threads (miga.MIGA attribute)

MIGA class documentation

	
class miga.MIGA

	Mutual Information Genetic Algorithm main class.

This class stores the current state of the genetic algorithm and dispatch its
calculations to the selected platform.

	
death

	Genetic algorithm death rate.

This rate indicates the proportion of entities (based on population size) that
will be killed between the generations. Worst fitness entities are killed first.
Elite entities never get killed. Death rate must be a value in the range [0, 1).

See also

pop_size, minimize, elite

	
elite

	Genetic algorithm elite ratio.

This ratio indicates the proportion of entities (based on population size) that
will never be killed or mutated between generations. Elite ratio must be a value
in the range [0, 1).

See also

pop_size, mutation, death, minimize

	
fitness

	Population fitness

Read-only copy of of the array containing each entity fitness value. This
array is first initialized with zeros.

See also

run()

	
genome

	Population genome.

Encoded genome for each entity. Each number indicates to which sequence in group
B the current index is paired. Genomes are randomly initialized when
set_msa is called or when pop_size is increased. When setting
genome to another matrix, shape must be preserved.

See also

pop_size, set_msa()

	
lambda_

	Mutual information pseudocounter parameter.

Parameter used by the pseudocounter in the mutual information calculations.

See also

q, run()

	
minimize

	Optimization target.

True if the genetic algorithm must minimize the fitness, False otherwise.

See also

fitness, run()

	
mutation

	Genetic algorithm mutation rate.

This rate indicates the proportion of swaps (based on genome size) that will be
applied to each entity between the generations. Mutations are not applied to
elite entities. Mutation rate must be a non-zero value.

See also

genome, elite

	
platform

	Platform which will be used by the genetic algorithm.

Platform where the genetic algorithm calculations will run. Possible values are
‘CPU’, ‘GPU’ and ‘SimpleGPU’. Platforms ‘GPU’ and ‘SimpleGPU’ will be available
only if the package was compiled with CUDA support. Platform ‘SimpleGPU’ is a
non-optimized reference platform to help on writing new platforms for GPU use.

See also

run()

	
pop_size

	Population size.

Number of entities used by the genetic algorithm. There must be at least one
entity.

See also

elite, death, genome

	
q

	Number of symbols in the MSA.

Total number of possible symbols used to encode both MSAs. Must be a non-zero
value.

See also

seq_a, seq_b, set_msa()

	
run()

	Run the genetic algorithm.

Run the genetic algorithm for generations generations with the current state
(e.g. population, MSA, platform). In each generation the following steps are
repeated:

	Entities will be sorted based on their fitness (see minimize).

	Worst fitness entities will be replaced by copies of the remaining entities (see death).

	Non-elite entities genomes will be mutated (see elite and mutation).

	Parameters

	generations (:type:`int`) – Number of generations to run the genetic algorithm. If it’s 0, population
will be sorted based on the calculated fitness values.

	
seq_a

	Read-only copy of encoded MSA representing the first group.

See also

set_msa()

	
seq_b

	Read-only copy of encoded MSA representing the second group.

See also

set_msa()

	
set_msa()

	Set MSA used to do MI calculations.

Set the MSA that represents the two groups used in the calculation and
initialize the genomes of all population to a random state.

	Parameters

	
	seq_a (numpy.ndarray) – First group encoded MSA. All entries must be positive and lower then
q.

	seq_b (numpy.ndarray) – Second group encoded MSA. All entries must be positive and lower then
q.

See also

genome, seq_a, seq_b, q

	
threads

	Number of threads to be used by multithreading platforms.

There must be at least 1 thread. This attribute is innefective when using any
GPU platform.

 nav.xhtml

 Table of Contents

 		
 MIGA documentation

 		
 MIGA user reference

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

